Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People's Republic of China

Correspondence e-mail: houhanna@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.105 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[2-(cyclohexyliminomethyl)phenolato]zinc(II)

The title compound, $[Zn(C_{13}H_{16}NO)_2]$, is a mononuclear zinc(II) complex. The central Zn^{II} ion, lying on an inversion centre, is coordinated by two N atoms and two O atoms from two Schiff base 2-cyclohexyliminomethylphenolate anions, resulting in a square-planar geometry.

Received 18 May 2005 Accepted 19 May 2005 Online 28 May 2005

Comment

Schiff base complexes have been studied extensively because of their interesting structures and varied applications (Bhaduri, *et al.*, 2003; You, 2005). Zinc(II) has long been recognized as a structural template in protein folding or as a Lewis acid catalyst that can readily adopt 4-, 5- or 6-coordination (Vallee & Auld, 1993; Lipscomb & Sträter, 1996). As part of an investigation of the structures of Schiff base zinc(II) compounds, the title compound, (I) (Fig. 1), a mononuclear zinc(II) complex, is reported here.

The central Zn^{II} ion, lying on an inversion centre, is in a square-planar geometry and is four-coordinated by two N atoms and two O atoms from two Schiff base molecules. Both the Zn–O bond length of 1.891 (2) Å and the Zn–N bond length of 2.015 (2) Å are comparable with the corresponding values observed in other Schiff base zinc(II) complexes (Kratochvíl *et al.*, 1991; Tatar *et al.*, 1999). As expected, the cyclohexyl group adopts a chair conformation to minimize steric effects. There are no short intermolecular contacts in the crystal structure of (I) (Fig. 2).

Experimental

Salicylaldehyde (0.1 mmol, 12.1 mg), cyclohexylamine (0.1 mmol, 10.1 mg) and $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.1 mmol, 22.0 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h to give a clear yellow solution. After the solution had been kept in air for 3 d, yellow block-shaped crystals of (I) were formed.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Atoms labelled with the suffix A are generated by the symmetry operation (-x, 2 - y, 2 - z).

Crystal data

$[Zn(C_{13}H_{16}NO)_2]$	Z = 1
$M_r = 469.91$	$D_x = 1.383 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.470 (2) Å	Cell parameters from 3750
b = 7.814 (2) Å	reflections
c = 12.035 (2) Å	$\theta = 2.8-28.3^{\circ}$
$\alpha = 97.70 \ (3)^{\circ}$	$\mu = 1.11 \text{ mm}^{-1}$
$\beta = 101.90 \ (3)^{\circ}$	T = 298 (2) K
$\gamma = 104.88 \ (3)^{\circ}$	Block, yellow
$V = 564.1 (3) \text{ Å}^3$	$0.28 \times 0.25 \times 0.21 \text{ mm}$

Data collection

Bruker SMART CCD	2502 independent ref
diffractometer	2457 reflections with
ω scans	$R_{\rm int} = 0.056$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.746, T_{\max} = 0.800$	$k = -10 \rightarrow 10$
5204 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.039$
$wR(F^2) = 0.105$
S = 1.14
2502 reflections
142 parameters
H-atom parameters constrained

2502 independent reflections
2457 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.056$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -8 \rightarrow 8$
$k = -10 \rightarrow 10$
$l = -15 \rightarrow 15$

$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2]$
+ 0.3104P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Figure 2 The crystal packing in (I), viewed along the *a* axis.

Table 1 Selected geometric parameters (Å, °).

Zn1-O1	1.891 (2)	Zn1-N1	2.015 (2)
O1 ⁱ -Zn1-N1	89.54 (8)	O1-Zn1-N1	90.46 (8)
Symmetry code: (i) $-x$, -	-y + 2, -z + 2.		

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93-0.98 Å and with the constraint $U_{iso}(H) = 1.2U_{eq}(C)$ applied.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author thanks the Hubei Institute of Education for funding this study.

References

- Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. & Christou, G. (2003). Inorg. Chem. 42, 1483-1492.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kratochvíl, B., Ondrácek, J., Novotný, J. & Haber, V. (1991). Acta Cryst. C47, 2207-2209.
- Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tatar, L., Ülkü, D. & Atakol, O. (1999). Acta Cryst. C55, 508-510.
- Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.
- You, Z.-L. (2005). Acta Cryst. C61, m295-m297.